

K.M.G. COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS)

Approved by the Government of Tamil Nadu Permanently Affiliated to Thiruvalluvar University, Vellore Recognized under Section 2(f) and 12(B) of the UGC Act 1956 Accredited by NAAC (2nd Cycle) with (CGPA of 3.24/4) 'A' Grade

P.G. & RESEARCH DEPARTMENT OF COMPUTER SCIENCE

M.Sc., INFORMATION TECHNOLOGY

SYLLABUS

(CHOICE BASED CREDIT SYSTEM)

Under

LEARNING OUTCOMES-BASED CURRICULUM

FRAMEWORK (LOCF)

(Effective for the Batch of Students Admitted from 2024-2025)

PREFACE

This course is designed to provide students with a working knowledge of computer concepts and essential skills necessary for work and communication in today's society. Students will learn safety, security, and ethical issues in computing and social networking. Students will also learn about input/output systems, computer hardware and operating systems. Students learn the basics of Database Management Systems (Access) as well as Personal Information Management software (Outlook). Students are also introduced to desktop publishing (Publisher), and video editing software (Movie Maker). Students will also be introduced to digital animation, 3D Design, and programming. Information Technology provides learners with a solid foundation in all major aspects of computing technology. The course covers Information Technology (IT) from the early days of computing to the current cloud computing, social media platforms, and beyond. Students will explore the fundamentals of networking, software, and programming. Students will learn to speak the complex language of information technology and gain an understanding of how to harness the power of sophisticated technology tools. The course includes pre-assessments, self-assessments, interactive exercises, videos, and games that appeal to a variety of learning styles. Narrative scenarios and case studies will give students opportunities to use critical thinking skills and apply their IT knowledge to real-world scenarios. Topics covered in this course include the evolution of information science, IT security, operating systems, computing architecture and design, programming languages, the software development life cycle, types of malware and computing attacks, networking, telecommunications, and the internet, networking devices and protocols, computer hardware and devices, database management, computing models, mobile computing, social media, cloud computing, e-commerce, ethics and IT, and IT policy and governance. The exposure to the industrial internship and MoUs with industries can open an avenue for a start-up and its progress would be followed regularly. The OBE based evaluation methods will reflect the true cognitive levels of the students as the curriculum is designed with course outcomes and cognitive level correlations as per BLOOM's Taxonomy.

In pursuit of the Higher Education Department Policy Note 2022-23 Demand 20, Section 1.4, Tamil Nādu State Council for Higher Education took initiative to revamp the curriculum. On 27 July 2022, a meeting was convened by the Member-Secretary Dr. S. Krishnasamy enlightening the need of the hour to restructure the curriculum of both Undergraduate and Post-graduate programmes based on the speeches at the Tamil Nādu Legislative Assembly Budget meeting by the Honourable Higher Education Minister Dr K. Ponmudy and Honourable Finance Minister Dr. P. Thiagarajan. At present there are three

different modes of imparting education in most of the educational institutions throughout the globe. Outcome Based Education, Problem Based Education, and Project Based Education.

Now our Honourable Higher Education Minister announced Industry Aligned Education. During discussion, Member Secretary announced the importance of question papers and evaluation as envisaged by the Honourable Chief Secretary to Government Dr, V. IraiAnbu. This is very well imbedded in Revised Bloom's Taxonomy forms three learning domains: the cognitive (knowledge), affective(attitude), and psychomotor (skill). This classification enables to estimate the learning capabilities of students.

Briefly, it is aimed to restructure the curriculum as student-oriented, skill-based, and institution industry- interaction curriculum with the various courses under "Outcome Based Education with Problem Based Courses, Project Based Courses, and Industry Aligned Programmes" having revised Bloom's.

ABOUT THE COLLEGE

The College was established in the new millennium 2000 by the vision of late Shri.K.M.Govindarajan fondly known as Iyah, with a mission to offer higher education in the fields of Arts and Science to the needy and the poor middle class students of this area and make them fully employable and economically self-reliant. With a humble beginning of launching an elementary school named Thiruvalluvar Elementary School in the year 1952, Iyah groomed it into a Higher Secondary School and later into a college. Education was his soul and breath. The college has grown into a full-fledged educational hub offering 12 Under Graduate Programmes, 8 Post Graduate Programmes, 5 M.Phil Research Programmes and 4 Ph.D Programmes. The college has been accredited with 'A' grade by NAAC in 2nd cycle and recognized under section 2(f) & 12(B) of the UGC act 1956. The College is permanently affiliated to Thiruvalluvar University. The College is also acquired the status of Autonomous from the academic year 2024-2025. The College is an associate member of ICT Academy and registered member of NPTEL and Spoken Tutorials of IIT Bombay. The college is also a member of INFLIBNET and NDL.

VISION OF THE COLLEGE

Empower young men and women by educating them in the pursuit of excellence, character building and responsible citizen.

MISSION OF THE COLLEGE

Offer higher education in the fields of Arts, Science & Management to the needy and make them fully self-dependent.

QUALITY POLICY OF THE COLLEGE

KMG Students achieve the best learning results and personal growth with modern education that equip them for working life and a changing society to become deserving citizens.

ABOUT THE DEPARTMENT

The Department of Computer Science was established in the year 2000 with a view to fulfill the dynamic needs of IT sector all over the world. The department is well equipped with all basic and latest resources. The department comprises of well qualified and dedicated faculty members. The Department aims to make the students use their intellectual caliber for effective and quick acquisition. The Department runs the following courses.

VISION OF THE DEPARTMENT

To provide a pleasant and friendly environment for learning in discipline of computer science to mobilize students towards serving a globalized technological society.

MISSION OF THE DEPARTMENT

- > To ensure that every student is proficient with necessary computer skills.
- To inculcate strong ethical values, professional behavior and leadership abilities in students character so as to work with a commitment to the progress of the nation.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

1. Professional Excellence: Graduates will demonstrate competency and excellence in their chosen fields of study, applying theoretical knowledge to practical situations effectively.

 Character Development: Graduates will exhibit strong moral and ethical character, upholding values of integrity, honesty, and respect for others in both personal and professional endeavors.

3. Leadership and Citizenship: Graduates will emerge as responsible leaders and active citizens, contributing positively to their communities and society at large through their actions and initiatives.

4. Continuous Learning: Graduates will engage in lifelong learning and professional development activities, adapting to evolving technologies, methodologies, and societal needs.

5. Self-Dependency and Entrepreneurship: Graduates will possess the skills and mindset necessary to be self-reliant and entrepreneurial, capable of creating opportunities for themselves and others through innovation and initiative.

6. Effective Communication and Collaboration: Graduates will demonstrate proficiency in communication skills, both verbal and written, and exhibit the ability to collaborate effectively with diverse teams and stakeholders.

7. Global Perspective: Graduates will have a broad understanding of global issues and perspectives, demonstrating cultural sensitivity and adaptability in multicultural environments.

PROGRAM OUTCOMES (POs)

On successful completion of the programme, the students will be able to:

POs	Graduate Attributes	Statements
PO1	Disciplinary Knowledge	Acquire detailed knowledge and expertise in all the
101	Disciplinary Thiowledge	disciplines of the subject.
		Ability to express thoughts and ideas effectively in
PO2	Communication Skills	writing, listening and confidently Communicate with
		others using appropriate media
PO3	Critical Thinking	Students will develop aptitude Integrate skills of analysis,
		critiquing, application and creativity.
PO4	Analytical Reasoning	Familiarize to evaluate the reliability and relevance of
		evidence, collect, analyze and interpret data.
PO5	Problem Solving	Capacity to extrapolate the learned competencies to solve
		different kinds of non-familiar problems.
	Employability and	Equip the skills in current trends and future expectations
PO6		for placements and be efficient entrepreneurs by
	Entrepreneurial Skill	accelerating qualities to facilitate startups in the
		competitive environment.
PO7	Individual and Team	Capability to lead themselves and the team to achieve
	Leadership Skill	organizational goals and contribute significantly to society.
	Multicultural	Possess knowledge of the values and beliefs of multiple
PO8	Competence	cultures and a global perspective.
	-	
PO 9	Moral and Ethical	Ability to embrace moral/ethical values in conducting
	awareness/reasoning	one's life.
		Identify the need for skills necessary to be successful in
PO10	Lifelong Learning	future at personal development and demands of work
		place.

PROGRAM SPECIFIC OUTCOMES (PSOs)

On successful completion of the M.Sc., Information Technology, the students will be able to:

PSOs	Statements							
	Posses the knowledge in the field of Information Technology through theory and							
PSO1	practical							
DCO2	Demonstrate high-level expertise in the fields Information Technology and research.							
PSO2	Use software development tools, software systems, and modern computing platforms.							
DGOO	Communicate Information Technology concepts, designs, solutions, implement							
PSO3	effectively and also professionally.							

Correlation Rubrics:

High	Moderate	Low	No Correlation
3	2	1	-

Mapping of PSOs with POs:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
PSO1	3	3	2	3	2	1	2	3	-	3
PSO2	3	2	2	2	3	3	2	1	-	3
PSO3	3	3	3	3	3	3	2	3	-	2

K.M.G. COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS)

Subject and Credit System- M.Sc., Information Technology

(Effective for the Batch of Students Admitted from 2024-2025)

Semester	Part	Cotogowy	Course Code	Course Title	Ins.Hrs/	Credit	Max	imum Mar	ks
Semester	rari	Category	Course Coue	Course The	Week	Crean	Internal	External	Tota
		Core-1	APCIT11	Python Programming	7	5	25	75	100
		Core-2	APCPIT12	Python Programming - Practical	7	5	25	75	100
3 R - I		Core-3	APCPIT13	Web Development using Word Press– Practical	6	4	25	75	100
			APEIT14A	Data structures					
TER	Part I	Elective I (Choose any	APEIT14B	Compiler Design	5	3	25	75	100
SEMESTER	\mathbf{P}_{3}	One)	APEIT14C	Natural Language Processing.				15	
		,	APEIT14D	Block Chain Technology					
		Elective II	APEIT15A	Operating Systems.			25		100
		(Choose any	APEIT15B	Digital Computer Architecture.	5	3		75	
		(Choose any One)	APEIT15C	Human Computer Interaction.				75	100
		One)	APEIT15D	Big Data Analytics					
			Seme	30	20				
		Core-4	APCIT21	Database System	5	5	25	75	100
		Core-5	APCPIT22	RDBMS- Practical	6	5	25	75	100
		Core-6	APCPIT23	Mobile Development - Practical	6	4	25	75	100
		Elective III	APEIT24A	Networks and Security		3	25	75	100
п.	H	(Choose any	APEIT24B	Cloud Computing	4				
	Part I	One)	APEIT24C	Biometric Techniques					
E	Å	Elective IV	APEIT25A	Software Engineering					100
LS		(Choose any	APEIT25B	Object Oriented Analysis and Design	4	3	25	75	
ИE		One)	APEIT25C	Software Project Management					
SEMESTER		SEC1	APSIT26	Skill Enhancement Course -SEC Mobile Development	3	2	25	75	100
	Part	Compulsory	APHR20	Human Rights	2	2	25	75	100
	II Paper APMOOC20 MOOC Course					2	-	100	10
			Seme	ster Total	30	26			
									Γ

Somoston	Dont	Catagony	Course Code	Course Title	Ins.Hrs/	Credit	Max	ximum Mar	ks
Semester	Part	Category	Course Code	Course Title	Week	Credit	Internal	External	Tota
	 	Core-7	APCIT31	Advanced Java	6	5	25	75	100
		Core-8	APCPIT32	Advanced Java - Practical	6	5	25	75	10
SEMESTER - III		Core-8 Core-9	APCPI132 APCIT33	Open Source Technologies	6	5	25	75	10
		Core-9 Core-10	APCIT33 APCPIT34	Open Source Technologies - Practical	5	4	25	75	10
-	—	Elective V	APCPI134 APEIT35A		3	4	23	15	10
ER		(Choose any	APEIT35A APEIT35B	Research Methodology Internet of Things		3	25	75	10
E	Part	(Choose any One)	APEIT35B APEIT35C	Trends in computing	4	5	25	15	10
E			APEIISSC	Skill Enhancement Course –SEC Industry			<u> </u>		──
N)		SEC2	APSIT36	Module – Mini Project done with in the	3	2	25	75	10
SE		SEC2		campus	3			15	
		Compulsory	APIIT37	Internship/Industrial Activity	-	2	100	-	10
			Seme	ester Total	30	26			
		Core-11	APCIT41	Net with C# Programming	6	5	25	75	10
		Core-12	APCPIT42	Net with C# Programming-Practical	6	5	25	75	10
		Core-13	APPIT43	Project with viva voce-Industry related project and carried out in the industry	10	7	25	75	10
	l ſ	Elective VI	APEIT44A	Intelligent Systems			25	75	10
		(Choose any	APEIT44B	Introduction to Robotics	4	3	25	75	10
		One)	APEIT44C	Virtual and Augmented Reality			25	75	10
SEMESTER - IV	Part - I	SEC3	APSIT45	Professional Competency Skill Enhancement Course Term Paper & Seminar Presentation – Staff supervisor should select and assign different Advanced Technology topics to the students. The students must give presentation of the allotted topic in the respective class hours. The document of the presentation of respective topic allotted to them must be prepared and submitted with soft binding (around 50 to 100 Pages). – Evaluation is done by the External examiners similar to Project Viva voce.	4	2	25	75	10
	Part II	Compulsory Paper	Extension Activity	-	1	100	-	10	
	1		Semer	ster Total	30	23	<u> </u>		L

Parts	Parts Semester-I		Semester-III	Semester-IV	Total Credits
Part-I	20	22	26	22	90
Part-II	-	4	-	1	5
Total	20	26	26	23	95

Consolidated Semester wise and Component wise Credit distribution

*Part I and Part II components will be separately taken into account for CGPA calculation and classification for the post graduate programme and has to be completed during the duration of the programme as per the norms, to be eligible for obtaining the PG degree.

Title of the Course	PYTHON PROGRAMMING	Hours/Week	7
Course Code	APCIT11	Credits	5
Category	CORE I	Year & Semester	I & I
Prerequisites	Basic understanding on object oriented programming concepts.	Regulation	2024

Objectives of the course:

> To acquire programming skills in core Python and to develop database applications in Python

UNITS	Contents	COs	Cognitive Levels
I-LINU	Core Python: Introduction - Python Basics: Comments - Statements and syntax - variable Assignment - Identifiers - Python objects : Built-in-types - Internal types - Standard Type operators - Standard type Built-in-functions. Numbers : Introduction to Numbers - Integers - Floating point numbers - Complex numbers - Operators - Built-in and factory functions – Conditionals and Loops -Sequences : Strings, Lists and Tuples	CO1	K1, K2
II-TINU	Mapping and set types Functions and functional programming: Introduction - Calling functions - Creating functions - passing functions - Formal arguments - Variable - Length Arguments - Functional Programming - Variable Scope – Recursion	CO2, CO3	K1, K2
III-TINU	Modules: Modules and Files – namespaces - Importing Modules - Features - Built-in functions. Object Oriented Programming: Introduction - Object Oriented Programming – Encapsulation Inheritance – Polymorphism - Errors and Exceptions: Introduction – Exceptions in Python.	CO2, CO3	K1, K2
UNIT-IV	GUI Programming: Introduction – Using Widgets: Core widgets- Generic widget properties – Labels – Buttons – Radio Buttons – Check Buttons – Text – Entry – List Boxes – Menus – Frame – Scroll Bars – Scale – Data Visualization using Grid and Graph.	CO4	K1, K2,K3,K5
UNIT-V	Database Programming: Connecting to a database using MySQL - Creating Tables - INSERT-UPDATE - DELETE - READ operations Case Studies : analyzing and visualizing data using Grid and Graph, Database Access with Python, Web Designing using Python.	CO5	K1,K2, K3, K6

- 1. Wesley J. Chun, (2007), "Core Python Programming", Pearson Education, Second Edition (Unit I,II,III).
- **2.** 2. Charles Dierbach, (2015), "Introduction to Computer Science Using Python A Computational ProblemSolving Focus", Wiley India Edition- (Unit III- Object Oriented Programming)
- **3.** 3. Martin C Brown, (2018), "The Complete Reference Python", McGraw Hill Education (India) Private Limited (Unit IV)

Reference Books

1. Mark Lutz, (2013), "Learning Python Powerful Object Oriented Programming", O"reilly Media, 5 th Edition.

2. Timothy A. Budd, (2011), "Exploring Python", Tata MCGraw Hill Education Private Limited, First Edition.

3. Allen Downey, Jeffrey Elkner, Chris Meyers, (2012), "How to think like a computer scientist:

learning with Python"

Website and e-learning source

- 1. http://interactivepython.org/courselib/static/pythond
- 2. <u>http://www.ibiblio.org/g2swap/byteofpython/read/</u>
- 3. <u>http://www.diveintopython3.net/</u>
- 4. http://docs.python.org/3/tutorial/index.html

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able to

COs	CO Description	Cognitive Level
CO1	Explain the basic concepts in python language.	K1, K2
CO2	Apply the various data types and identify the usage of control statements, loops, functions and modules in python for processing the data	K1, K2
CO3	Analyze and solve problems using basic constructs and techniques of python.	K1, K2
CO4	Assess the approaches used in the development of interactive application.	K1, K2,K3,K5
CO5	To build real time programs using python	K1,K2, K3, K6

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	1	3	1	1	1	1	-	-	2	3	1	1
CO2	3	1	2	3	2	2	2	-	-	2	3	2	2
CO3	3	1	3	2	3	2	2	-	-	2	3	2	3
CO4	3	2	2	3	3	2	3	-	-	3	3	3	3
CO5	3	2	2	2	3	3	3	-	-	3	3	3	3

Title of the Course	PYTHON PROGRAMMING – PRACTICAL	Hours/Week	7
Course Code	APCIT12	Credits	5
Category	CORE II	Year & Semester	I & I
Prerequisites	Basic understanding of C, C++ and Java programming languages	Regulation	2024

Objectives of the course:

This course gives practical experience in Python basics, Object Oriented programming like Classes, Inheritance, and Polymorphism, GUI Applications and Database connection.

S.No	List of Excersice	COs	Cognitive Levels
1	Python Basic programs	CO1	K1, K2
2	Control Structures	CO1	K1, K2
3	Lists	CO2	K2, K3
4	Functions and Recursions	CO1	K1, K2
5	Modules	CO1, CO2	K1, K2, K3
6	String Processing	CO1, CO2	K1, K2, K3
7	Dictionaries and Sets	CO1, CO2	K1, K2, K3
8	Classes and Objects using Machine learning Tools	CO3, CO4	K1, K2, K4,K5
9	Polymorphism using Machine learning Tools	CO3, CO4	K1, K2, K4,K5
10	Inheritance using Machine learning Tools	CO3, CO4	K1, K2, K4,K5
11	GUI Application with Data Visualization	CO4, CO5	K1, K2, K3, K5, K6
12	Working with Database	CO4, CO5	K1, K2, K3, K5, K6

1. Wesley J. Chun, (2007), "Core Python Programming", Pearson Education, Second Edition

Reference Books

1. Mark Lutz, (2013), "Learning Python Powerful Object Oriented Programming", O"reilly Media, 5 th Edition.

2. Timothy A. Budd, (2011), "Exploring Python", Tata MCGraw Hill Education Private Limited, First Edition.

3. Allen Downey, Jeffrey Elkner, Chris Meyers, (2012), "How to think like a computer scientist: learning with Python"

4. Aditya Kanetkar, Yashavant Kanetkar, (2023) "Let us Python" - 6th Edition Publication: bpb

Website and e-learning source

- 1. http://interactivepython.org/courselib/static/pythonds
- 2. http://www.ibiblio.org/g2swap/byteofpython/read/
- 3. http://www.diveintopython3.net/
- 4. http://docs.python.org/3/tutorial/index.html
- 5. <u>https://youtu.be/eFByJkA3ti4?si=hqjcyt4sX2CpYe9m</u>

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able to

COs	CO Description	Cognitive Level			
CO1	Understand the significance of control statements, loops and functions in	K1, K2			
001	creating simple programs.	111, 112			
CO2	Apply the core data structures available in python to store, process and sort	K2, K3			
002	the data.	112, 113			
CO3	Analyze the real time problem using suitable python concepts	K2, K4			
<u> </u>	A second the complex much laws using a support into a support in such as				
CO4	Assess the complex problems using appropriate concepts in python	K1, K2, K5			
CO5	Develop the real time applications using python programming language.	K1, K2, K3, K6			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	2	1	1	2	2	2	-	-	3	3	2	3
CO2	3	2	1	2	2	2	2	-	-	2	2	2	3
CO3	3	2	2	3	3	2	3	-	-	3	3	2	3
CO4	3	2	3	3	3	3	3	-	-	3	2	2	2
CO5	3	2	3	3	3	3	3	-	-	3	2	2	2

Title of the Course	WEB DEVELOPMENT USING WORD PRESS - PRACTICAL	Hours/Week	6
Course Code	APCPIT13	Credits	4
Category	CORE III	Year & Semester	I & I
Prerequisites	Basic understanding on HTML and CSS	Regulation	2024

Objectives of the course:

The primary course objective of this paper is to learn the fundamentals of basic web concepts, HTML, DHTML, JavaScript and Word Press

UNITS	Contents	COs	Cognitive						
UNIIS	Contents	COS	Levels						
For eac	For each UNIT at least 2 Lab exercises should be carried out using								
	components in the syllabus								
I-LINU	Introduction to HTML - Lists - Adding Graphics to HTML Documents - Tables -Linking Documents - Frames- Developing HTML Forms	CO1	K1, K2						
II-LINU	Dynamic HTML - Cascading Style Sheets - Use of SPAN Tag - External Style Sheets -Use of DIV Tag - Developing Websites	CO1, CO2	K1, K2, K3						
III-TINU	Introduction to JavaScript - JavaScript in Web Pages - Advantages - Writing JavaScript into HTML - Basic Programming Techniques - Operators and Expressions- JavaScript Programming Construct: Conditional Checking, Controlled Loops, Functions: Built-in Functions, User-Defined Functions - Placing Text in a Browser - Dialog Boxes.	CO2, CO3	K1,K2, K3, K4						
VI-TINU	JavaScript Document Object Model: Introduction - Understanding Objects in HTML - Handling Events using JavaScript. Forms used by a Website: Form Object - Built-in Objects.	CO2, CO4	K1,K2, K3, K5						
A-TINU	Word Press: Installation - Stetting and administration- Word press: Theming basics - Our First Word Press Website - Theme Foundation - Menu and navigation - Home page - Dynamic Sidebars and Widgets - Page - archive Page results - Testing and Launching	CO5	K1,K2,K3, K6						

1. Ivan N. Bayross, (2005), Web Enabled Commercial Applications Development Using HTML,

DHTML, JavaScript, perlCGI, 3rd Edition, BPB Publications. (Unit I, II, III and IV)

2. Jesse Friedman,(2012), Web Designer's Guide to WordPress: Plan, Theme, Build, Launch (Voices That Matter), 1st Edition, New Riders. (Unit V)

Reference Books

1. N.P. Gopalan, J. Akilandeswari, (2009), Web Technology: A Developer"s Perspective, Eastern

Economy Edition, PHI Learning Private Limited.

2. Deitel&Deitel, (2000), Internet and World Wide Web How to program, Prentice Hall.

3. Jon Duckett, (2004), Beginning Web Programming with HTML, XHTML, and CSS, Wiley

Publishing, Inc.

Website and e-learning source

- 1. http://www.sergey.com/web_course/content.html
- 2. http://www.pageresource.com/jscript/index.html
- 3. <u>http://www.peachpit.com/guides/content.aspx</u>
- 4. https://www.tutorialspoint.com/wordpress/index.html

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

COs	CO Description	Cognitive Level
CO1	Identify the tools which will be suitable for the requirement of the webpage.	K1, K2
CO2	Implement Java script and Style Sheets effectively in the Web Pages	K1,K2, K3
CO3	Analyze the different tools and built-in functions available to be applied in the webpage	K1,K2, K3, K4
CO4	Rate the design and effectiveness of the Web Pages created.	K1,K2, K3, K5
CO5	Design and publish a website using Word press	K1,K2, K3, K6

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	2	1	1	1	1	1	-	-	2	2	2	3
CO2	3	2	2	1	2	1	1	-	-	2	3	2	3
CO3	3	2	3	3	3	2	2	-	-	3	2	3	1
CO4	3	1	3	3	3	3	3	-	-	3	3	3	3
CO5	3	1	3	3	3	3	3	-	-	3	3	3	1

Title of the Course	DATA STRUCTURES	Hours/Week	5
Course Code	APEIT14A	Credits	3
Category	ELECTIVE I (EC1)	Year & Semester	I & I
Prerequisites	Basic understanding of programming and foundational concepts in computer science	Regulation	2024

Objectives of the course:

To become familiar with the various data structures and their applications and to increase the understanding of basic concepts of the design and use of algorithms.

UNITS	Contents	COs	Cognitive Levels
I-TINU	Introduction and Overview: Definitions – Concept of Data Structures – Overview of Data Structures – Implementation of Data Structures – Arrays: Definition – One Dimensional Array – Multidimensional Arrays: Two Dimensional Array – Sparse Matrices – Three dimensional and n- dimensional Arrays – Stacks : Introduction – Definition – Representation of Stack – Operations on Stack – Applications of Stacks: Evaluation of Arithmetic Expressions – Implementation of Recursion - Tower of Hanoi Problem	CO1, CO2	K1, K2
UNIT-II	Queues: Introduction – Definition – Representation of Queues – Various Queue Structures : Circular Queue – Deque – Priority Queue – Applications of Queues : Simulation – CPU Scheduling in a Multiprogramming Environment – Round Robin Algorithm – Linked Lists: Single Linked List – Circular Linked List – Double Linked List – Circular Double Linked List – Applications of Linked List: Polynomial Representation	CO2, CO3	K1, K2, K3, K4
-TINU	Trees: Basic Terminologies – Representation of Binary Tree: Linear Representation – Linked Representation – Operations: Traversals – Types of Binary Trees: Expression Tree – Binary Search Tree – Splay tree	CO3, CO4	K3, K4
UNIT- IV	Sorting: Bubble Sort, Insertion Sort, Selection Sort, Shell Sort – Quick Sort - Merge Sort - Radix Sort - Heap Sort – Searching: Linear Search - Binary Search	CO3, CO4	K3, K4
V-TINU	Graphs: Introduction – Graph representation and its operations – Path Matrix – Graph Traversal - Application of DFS – Shortest Path Algorithm – Minimum Spanning Tree : Prim''s Algorithm – Kruskal''s Algorthim - Greedy – Knapsack – Back Tracking – 8 Queens	CO4, CO5	K4, K5

1. Debasis Samantha (2013), Classic Data Structures, Second Edition, PHI Learning Private Limited.

2. P. Sudharsan, J. John Manoj Kumar, C & Data Structures, Third Edition, RBA Publications. Unit 4:

Chapter 14, Unit 5: Chapter 13

3. Ellis Horowitz, SartajSahni, Sanguthevar Rajeshakaran, (2007), Fundamentals of Computer

Algorithms, Second Edition, Universities Press (P) Limited

Reference Books

1. Sara Baase, (1991), Computer Algorithms – Introduction to Design and Analysis, Addison- Wesley Publishing Company 2. Robert Kruse, C.L.Tondo, Bruce Leung, Data Structures and Program Design in C ,2nd Edition, PHI Publications.

Website and e-learning source

1. http://www.cs.sunysb.edu/~skiena/214/lectures/

- 2. http://datastructures.itgo.com/graphs/dfsbfs.html
- 3. <u>http://oopweb.com/Algorithms/Documents/PLDS210/Volum eFrames.html</u>
- 4. <u>http://discuss.codechef.com/questions/48877/data-structuresand-algorithms</u>
- 5. http://code.tutsplus.com/tutorials/algorithms-and-datastructures--cms-20437

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able to

COs	CO Description	Cognitive Level
CO1	Outline the basic data structures	K1
CO2	Identify the different operations and memory representations	K1, K2
CO3	Interpret different techniques with their complexities	K1, K2,K3, K4
CO4	Compare the applications of various data structures	K1, K2,K3, K4
CO5	Choose an algorithm to solve simple problems suited for appropriate situations	K1, K2,K3, K4, K5

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	2	1	1	1	1	1	-	-	1	3	3	3
CO2	3	2	2	2	2	1	1	-	-	1	2	3	1
CO3	3	1	2	3	3	2	1	-	-	3	2	2	3
CO4	3	2	3	3	3	2	2	-	-	3	3	2	1
CO5	3	1	3	3	3	2	2	-	-	3	2	3	3

Title of the Course	COMPILER DESIGN	Hours/Week	5
Course Code	APEIT14B	Credits	3
Category	ELECTIVE I (EC1)	Year & Semester	I & I
Prerequisites	Basic knowledge in one of the programming language and data structures	Regulation	2024

Objectives of the course:

> To acquire the knowledge about the compiler design and to understand the different phases of Compiler.

UNITS	Contonto	COs	Cognitive
UNIIS	Contents	COS	Levels
I-LINU	Compilers & Translators, Need of Translators, Structure of a Compiler, Phases, Lexical Analysis, Syntax Analysis, Intermediate Code Generation, Code Optimization, Code Generation, Book Keeping, A Symbol Table in brief, Semantic Analysis, L-value, r-values, Error Handling	CO1	K1, K2
II-TINU	Rules of Lexical Analyser, Need for Lexical Analysis, Input Buffering, Preliminary Scanning, A simple Approach to the Design of Lexical Analysers, Transition Diagrams, Regular Expression, String & Languages, Finite Automata, Nondeterministic Automata, Deterministic Automata, From regular Expression to Finite Automata, Context free Grammars, Derivations & Parse Trees, Parsers, Shift Reduce Parsing, Operator- Precedence Parsing	CO1, CO2	K1, K2
UNIT-III	Symbol Table Management, Contents of a Symbol Table, Names & Symbol table records, reusing of symbol table spaces, array names, Indirection in Symbol Table entries, Data Structures for Symbol Tables, List, Self Organizing Lists, Search Trees, Hash Tables, Errors, Reporting Errors, Sources of Errors Syntactic Errors, Semantic Errors, Dynamic Errors, Lexical Phase Errors, Minimum Distance Matching, Syntactic Phase Error, Time of Detection, Ponic mode, Case study on Lex and Yacc	CO2	K1, K2
VI-TINU	Principal Sources of Optimization, Inner Loops, Language Implementation Details Inaccessible to the User. Further Optimization, Algorithm Optimization, Loop Optimization, Code Motion, Induction Variables, Reduction in Strength, Basic Blocks, Flow Graphs, DAG Representation of Basic Blocks, Value Numbers & Algebraic Laws, Global Data Flow Analysis, Memory Management Strategies, Fetch Strategy, Placement Strategies, Replacement Strategies, Address Binding, Compile Time, Load Time, Execution Time, Static Loading, Dynamic Loading, Dynamic Linking	CO3, CO4	K2, K3, K4

	Problems in Code Generation, a Simple Code Generator, Next-Use		
$\mathbf{>}$	Information, Register Descriptors, Address Descriptors, Code Generation	~~ (
Ľ	Algorithm, Register Allocation & Assignment, Global Register Allocation, Usage Counts, Register Assignment for Outer Loops, Register Allocation	,	K3, K4, K5
V-TINU	by Graph Coloring, Code Generation from DAG's, Peep-Hole Optimization,	CO5	
	Redundant Loads & Stores, Un-Reachable Code, Multiple Jumps, Algebraic		
	Simplifications, Use of Machine Idioms		

1. Compilers: Principles, Techniques & Tools, Second Edition by A. V. Aho, Monicas. Lam, Ravi Sethi, J. D. Ullman

Reference Books

- 1. Dhamdhere D.M., "Compiler Construction: Theory and Practice", McMillan India Ltd., 1983
- 2. Holub Allen, "Compiler Design in C", Prentice Hall of India, 1990

Website and e-learning source

- 1) 1. https://www.geeksforgeeks.org/compiler-design-tutorials/
- 2. https://www.tutorialspoint.com/compiler_design/
- 3. https://www.javatpoint.com/compiler-tutorial
- 4. <u>https://onlinecourses.nptel.ac.in/noc19_cs01/preview</u>
- 5. <u>http://ecomputernotes.com/compiler-design</u>

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able to

COs	CO Description	Cognitive Level
CO1	Identify the major phases of compilation and the functionality of LEX and	K1, K2
001	YACC	N 1, N 2
CO2	Describe the functionality of compilation process and symbol table	K1, K2
02	management.	N1 , N2
CO3	Apply the various parsing, optimization techniques and error recovery routines	K2, K3
005	to have a better code for code generation.	K 2, K 3
CO4	Analyze the techniques and tools needed to design and implement compilers.	K3, K4
CO5	Test a compiler and experiment the knowledge of different phases in	K4, K5
005	compilation.	1X7, IX3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	2	1	1	2	2	1	-	-	1	3	2	2
CO2	3	2	1	1	1	1	2	-	-	1	3	2	2
CO3	3	1	2	2	3	2	2	-	-	1	3	2	3
CO4	3	1	3	3	3	2	2	-	-	2	3	3	3
CO5	3	1	3	3	3	2	2	-	-	2	3	3	3

Title of the Course	NATURAL LANGUAGE PROCESSING	Hours/Week	5
Course Code	APEIT14C	Credits	3
Category	ELECTIVE I (EC1)	Year & Semester	I & I
Prerequisites	Basic understanding of natural language and linguistics	Regulation	2024

Objectives of the course:

To learn the fundamentals of natural language processing and to understand the role of CFG, semantics of sentences and pragmatics.

UNITS	Contents	COs	Cognitive
UNIIS	Contents	COS	Levels
I-LINN	Introduction: Origins and challenges of NLP – Language Modeling: Grammar-based LM, Statistical LM - Regular Expressions, Finite-State Automata – English Morphology, Transducers for lexicon and rules, Tokenization, Detecting and Correcting Spelling Errors, Minimum Edit Distance	CO1, CO2	K1, K2, K4
II-LINU	Word Level Analysis: Unsmoothed N-grams, Evaluating Ngrams, Smoothing, Interpolation and Backoff – Word Classes, Part-of-Speech Tagging, Rulebased, Stochastic and Transformation-based tagging, Issues in PoS tagging – Hidden Markov and Maximum Entropy models	CO3	K1, K2, K3
III-LINU	Syntactic Analysis: Context-Free Grammars, Grammar rules for English, Treebanks, Normal Forms for grammar – Dependency Grammar – Syntactic Parsing, Ambiguity, Dynamic Programming parsing – Shallow parsing – Probabilistic CFG, Probabilistic CYK, Probabilistic Lexicalized CFGs - Feature structures, Unification of feature structures	CO4	K1, K2, K5
AI-TINU	Semantics and Pragmatics: Requirements for representation, FirstOrder Logic, Description Logics – Syntax-Driven Semantic analysis, Semantic attachments – Word Senses, Relations between Senses, Thematic Roles, selection restrictions – Word Sense Disambiguation, WSD using Supervised, Dictionary & Thesaurus, Bootstrapping methods – Word Similarity using Thesaurus and Distributional methods	CO2	K1, K2, K4
A-TINU	Discourse Analysis and Lexical Resources: Discourse segmentation, Coherence – Reference Phenomena, Anaphora Resolution using Hobbs and Centering Algorithm – Coreference Resolution – Resources: Porter Stemmer, Lemmatizer, Penn Treebank, Brill's Tagger, WordNet, PropBank, FrameNet, Brown Corpus, British National Corpus (BNC)	CO4, CO5	K1, K2, K5, K6
1. Language 2.	nded Text Books Daniel Jurafsky, James H. Martin;Speech and Language Processing: An Introdu Processing, Computational Linguistics and Speech; Pearson Publication; 2014. Steven Bird, Ewan Klein and Edward Loper, —Natural Language Processing w lition, OReilly Media, 2009		

Reference Books

Breck Baldwin, —Language Processing with Java and LingPipe Cookbook, Atlantic Publisher, 2015.
Richard M Reese, —Natural Language Processing with Java, O_Reilly Media, 2015.
Nitin Indurkhya and Fred J. Damerau, —Handbook of Natural Language Processing, Second Edition, Chapman and Hall/CRC Press, 2010.

4. Tanveer Siddiqui, U.S. Tiwary, —Natural Language Processing and Information Retrieval, Oxford University Press, 2008.

Website and e-learning source

1. http://www.cse.iitb.ac.in/~pb/papers/nlp-iitb.pdf

2. <u>https://www.nitk.ac.in/faculty/dr-sarika-jain</u>

3. <u>https://www.simplilearn.com/tutorials/artificial-intelligencetutorial/what-is-natural-language-processing-nlp</u>

4. https://www.sas.com/en_us/insights/analytics/what-isnatural-language-processing-nlp.html

5. https://towardsdatascience.com/your-guide-to-naturallanguage-processing-nlp-48ea25

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able to

COs	CO Description	Cognitive Level
CO1	Describe the concepts of morphology, syntax, semantics, discourse & pragmatics of natural language	K1,K2
CO2	Identify various linguistic and statistical features relevant to the basic NLP task, namely, spelling correction, morphological analysis, parsing and semantic analysis	K1,K2,K4
CO3	Classify the text into an organized group using a set of handicraft linguistic rules with appropriate NLP processes and algorithms	K1,K2,K3
CO4	Analyze the system with various language analysis methods and interpret the results	K1,K2,K5
CO5	Assess NLP systems, identify and suggest solutions for the shortcomings	K1,K2,K6

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	1	1	1	1	1	1	-	-	2	3	2	3
CO2	3	1	1	1	2	1	1	-	-	1	3	2	3
CO3	3	2	2	2	2	2	2	-	-	2	3	2	2
CO4	3	2	3	2	2	3	2	-	-	2	2	3	2
CO5	3	2	3	3	3	3	3	-	-	2	3	3	3

Title of the Course	BLOCKCHAIN TECHNOLOGY	Hours/Week	5
Course Code	APEIT14D	Credits	3
Category	ELECTIVE I (EC1)	Year & Semester	I & I
Prerequisites	Basic knowledge of networking and cyber security concepts	Regulation	2024

Objectives of the course:

To study the basics of Blockchain technology, private and public Blockchain, and smart contract. This paper familiarizes the students to explore various aspects of Blockchain technology like application in various domains

UNITS	NITS Contents		
UNIIS	Contents	COs	Levels
I-TINU	Introduction of Cryptography and Blockchain : Definition of Blockchain - Blockchain Technology Mechanisms & Networks - Blockchain Origins - Objective of Blockchain - Blockchain Challenges - Transactions and Blocks - P2P Systems - Keys as Identity - Digital Signatures, Hashing, and public key cryptosystems - private vs. public Blockchain	CO1, CO2	K1, K2, K4
II-LINN	Bitcoin and Cryptocurrency : Bitcoin Terminology- The Bitcoin Network - The Bitcoin Mining Process - Mining Developments - Bitcoin Wallets - Decentralization and Hard Forks - Ethereum Virtual Machine (EVM) - Merkle TreeDouble- Spend Problem - Blockchain and Digital CurrencyTransactional Blocks - Impact of Blockchain Technology on Cryptocurrency	CO3	K1, K2, K3
III III	Introduction to Ethereum : Introduction to Ethereum - Consensus Mechanisms- Metamask Setup - Ethereum Accounts - Transactions - Receiving Ethers- Smart Contracts	CO4	K1, K2, K5
AI-TINU	Introduction to Hyperledger and Solidity Programming : Definition of Hyperledger - Distributed Ledger Technology & its Challenges - Hyperledger & Distributed Ledger Technology - Hyperledger Fabric -Hyperledger Composer - Solidity - Language of Smart Contracts - Installing Solidity & Ethereum Wallet - Basics of Solidity - Layout of a Solidity Source File & Structure of Smart Contracts - General Value Types	CO2	K1, K2, K4
A-TINU	Blockchain Applications : Internet of Things -Medical Record Management System - Domain Name Service and Future of Blockchain -Alt Coins	CO4, CO5	K1, K2, K5, K6

- 1. Imran Bashir, "Mastering Blockchain: Distributed Ledger Technology, Decentralization, and Smart Contracts Explained", Second Edition, Packt Publishing, 2018
- 2. Narayanan, J. Bonneau, E. Felten, A. Miller, S. Goldfeder, "Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction" Princeton University Press, 2016
- 3. Antonopoulos and G. Wood, "Mastering Ethereum: Building Smart Contracts and Dapps", O'Reilly Publishing, 2018

Reference Books

- 1. Antonopoulos, Mastering Bitcoin, O'Reilly Publishing, 2014
- 2. D. Drescher, Blockchain Basics. Apress, 2017

Website and e-learning source

- 1. <u>https://nptel.ac.in/courses/106/104/106104220/#</u>
- 2. https://archive.nptel.ac.in/courses/106/105/106105235/
- 2. <u>https://www.udemy.com/course/build-your-blockchain-az/</u>
- 3. https://eduxlabs.com/courses/blockchain-technologytraining/?tab=tab-curriculum
- 4. https://www.geeksforgeeks.org/consensus-algorithms-inblockchain/

5. https://ec.europa.eu/programmes/erasmus-plus/project-resultcontent/eb79d492-327b-43d8b479-dd0fd9fd4490/BLISS%2003 T3%20Unit%201%20slides%20v3.0%20final%20controled.pptx

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able to

COs	CO Description	Cognitive Level
CO1	Understand and explore the working of Block chain technology	K1,K2
CO2	Identify the security and privacy implications of block chain technology	K1,K2
CO3	Apply the learning of solidity to build de-centralized apps on Ethereum	K1,K2,K3
CO4	Analyze the working of Smart Contracts and the working of Hyperledger	K1,K2,K4
CO5	Assess the methods relevant for design, development and operation of block chain based applications	K1,K2,K6

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	1	1	1	1	1	1	-	-	2	2	2	3
CO2	3	1	1	1	2	1	1	-	-	1	2	2	3
CO3	3	2	2	2	2	2	2	-	-	2	3	2	2
CO4	3	2	3	2	2	3	2	-	-	2	3	3	2
CO5	3	2	3	3	3	3	3	-	-	2	3	3	3

Title of the Course	OPERATING SYSTEMS	Hours/Week	5
Course Code	APEIT15A	Credits	3
Category	ELECTIVE II (EC2)	Year & Semester	I & I
Prerequisites	Basic understanding of working principles of computer and about hardware and software components	Regulation	2024

Objectives of the course:

To develop fundamental knowledge of Operating systems, to become familiar with CPU Scheduling, memory and file management concepts, to learn concepts and programming techniques of Linux.

UNITS	Contents	COs	Cognitive Levels
I-TINU	Introduction : Evolution of Operating System - Structure - Processes - The Process Concepts - Inter Process Communication - IPC Problems - Scheduling Levels - Preemptive Vs Non- Preemptive Scheduling - Scheduling Algorithms: First Come First Served - Shortest Job First - Shortest Remaining Time Next - Three Level Scheduling - Round Robin Scheduling - Priority Scheduling -Multiple Queues - Shortest Process Next - Guaranteed Scheduling - Lottery Scheduling - Fair-Share Scheduling - Thread Scheduling	CO1, CO5	K1, K2, K4, K5
II-LINN	Swapping - Virtual Memory - Page Replacement Algorithm - Segmentation	CO3, CO4	K1, K2, K3, K4
III-LINU	Deadlock - Examples of Deadlock - Detection - Recovery - Avoidance - Prevention – Semaphore -Shared Memory	CO5	K1,K2, K4, K5
AI-TINU	File System - Files - Directories - I/O Management - Disks - Disk Arm Scheduling Algorithm	CO5	K1,K2, K4, K5
A-LINU	Introduction to Linux: Introducing Shell Programming - Linux File Systems - Linux File system calls - Implementation of Linux File systems - Linux Commands - Directory Oriented Commands - File Oriented Commands - Communication Oriented Commands- General Purpose Commands	CO2	K1,K2,K3

- 1. Andrew S. Tanenbaum, (2001), Modern Operating Systems, 2nd Edition, Prentice Hall of India.
- 2. B.Mohamed Ibrahim, (2005) Linux Practical Approach, Firewall Media.

Reference Books

- 1. Silberchatz, Galvin, Gagne, (2003), Operating Systems Concepts, 6th Edition Wiley India Edition.
- 2. JhonGoerzen, (2002), Linux Programming Bible, 4th Edition, Wiley- dreamtech India (P) Ltd.

Website and e-learning source

- 1. https://www.webopedia.com/TERM/O/operating_system.html
- 2. <u>https://www.tutorialspoint.com/operating_system/operating_system_tutorial.pdf</u>
- 3. http://iips.icci.edu.iq/images/exam/AbrahamSilberschatz-Operating-System-Concepts---

9th2012.12.pdf

4. https://www.informatics.indiana.edu/rocha/academics/i101/p dfs/os_intro.pdf

5. New folder

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able to

COs	CO Description	Cognitive Level
CO1	Outline the fundamental concepts of an OS and their respective functionality	K1, K2
CO2	Demonstrate the importance of open-source operating system commands	K1, K2,K3
CO3	Identify and stimulate management activities of operating system	K1, K2, K3
CO4	Analyze the various services provided by the operating system	K1,K2, K4
CO5	Interpret different problems related to process, scheduling, deadlock, memory and files	K1, K2, K4, K5

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	2	1	1	1	1	1	-	-	2	3	3	3
CO2	3	1	1	2	1	2	1	-	-	2	2	3	2
CO3	3	2	2	2	2	2	2	-	-	2	3	2	3
CO4	3	2	2	3	3	2	2	-	-	2	2	3	2
CO5	3	3	3	3	3	3	3	-	-	3	3	3	3

Title of the Course	DIGITAL COMPUTER ARCHITECTURE	Hours/Week	5
Course Code	APEIT15B	Credits	3
Category	ELECTIVE II (EC2)	Year & Semester	I & I
Prerequisites	Basic knowledge in Digital Design and Computer Architecture	Regulation	2024

Objectives of the course:

To provide a comprehensive introduction of the basic design of a computer and the interdependence and interoperation between the various components inside a computer.

LINITO	Contents	CO -	Cognitive
UNITS	Contents	COs	Levels
I-LINN	Data Representation - Data Types - Number Systems - Decimal and Alphanumeric Representation - Complements - (r-1)"s complement - (r"s) complement - Fixedpoint Representation - Floating-point Representation - Binary Codes - Gray Codes - Decimal Codes - Alphanumeric Codes - Error Detection Codes	CO1	K1, K4
II-LINU	Digital Computers - Logic Gates - Boolean Algebra - KMap Simplification - Combinational Circuits - Half Adder - Full Adder - SR, D, JK and T Flip Flops - Sequential Circuits - State Table - State Diagram - Digital Components: Integrated Circuits - Decoders - NAND Gate Decoder - Encoders - Multiplexers - Registers - Shift Registers - Binary Counters - Memory Unit	CO2, CO3, CO4	K1,K2, K3, K4
III-LINU	Register Transfer and Micro-operations: Register Transfer Language - Register Transfer - Bus and Memory Transfers - Arithmetic Micro- operations - Logic Micro-operations - Shift Micro- operations - Arithmetic Logic Shift Unit. Computer Organization and Programming: Instruction Codes - Computer Registers - Computer Instructions - Timing and Control - Instruction Cycle - Memory Reference Instructions - Input-Output and Interrupt	CO4	K1,K2, K3, K4
UNIT-IV	Central Processing Unit: General Register Organization - Instruction Formats - Addressing Modes - Data Transfer and Manipulation - Program Control. I/O Organization: Peripheral Devices - I/O Interface - Asynchronous Data Transfer - Modes of Transfer - Priority Interrupt - DMA	CO4, CO5	K1,K2, K3, K4
-TINU V	Memory Organization and CPU: Memory Hierarchy - Main Memory - Auxiliary Memory - Associative Memory - Cache Memory - Virtual Memory - Memory Management Hardware	CO5	K1,K2, K3, K4

1. M. Morris Mano, "Computer System Architecture", Prentice Hall of India, 2001

Reference Books

1. John P. Hayes, "Computer Architecture and Organization", Tata McGraw Hill, 1996.

2. V C Hamatcher et al, "Computer Organization", Tata McGraw Hill, 1996.

Website and e-learning source

1. http://www.labri.fr/perso/strandh/Teaching/AMP/Common/Stran dh-Tutorial/Dir.html

2. <u>http://www.computer-pdf.com/architecture/</u>

3. http://www.uotechnology.edu.iq/depcse/lectures/3/

4. <u>http://www.csie.nuk.edu.tw/~kcf/course/ComputerArchitecture/</u>

5. http://www.ecs.csun.edu/~cputnam/Comp546/Putnam/Cach e%20Memory.pdf(UnitV: Cache Memory)

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able to

COs	CO Description	Cognitive Level
CO1	Demonstrate the fundamental concept of binary representation and codes, combinational circuits, Instruction formats, register operations and memory organization	K1, K4
CO2	Explain the various types of flip flops, different types of micro operations, as well as the addressing modes in the instruction set	K1,K2
CO3	Apply the various number conversion systems and simplification of equations using K-map	K1,K2,K3
CO4	Analyze the various design of combinational circuits and flip flops to design a computer	K1,K2,K3,K4
CO5	Distinguish the major components of a computer including CPU, memory, I/O and storage	K1,K2,K3,K4

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	1	1	1	1	1	-	-	-	1	2	3	2
CO2	3	1	1	1	2	2	-	-	-	1	3	2	2
CO3	3	2	2	2	2	2	2	-	-	2	3	3	2
CO4	3	2	3	3	2	2	2	-	-	2	2	3	3
CO5	3	2	3	3	3	3	3	-	-	2	3	3	2

Title of the Course	HUMAN COMPUTER INTERACTION	Hours/Week	5
Course Code	APEIT15C	Credits	3
Category	ELECTIVE II (EC2)	Year & Semester	I & I
Prerequisites	Understanding the impact of human factors and Computer Science fundamentals	Regulation	2024

Objectives of the course:

To provide a comprehensive introduction of the basic design of a computer and the interdependence and interoperation between the various components inside a computer.

UNITS	Contents	COs	Cognitive
UNITS	Contents	COS	Levels
I-LINU	Foundations: The Human: Introduction-Input-Output Channels- Memory. The Computer: Introduction- Text Entry Devices- Display Devices- Memory. The Interaction: Introduction – Models of Interaction-Frameworks and HCI Ergonomics-Interaction Styles-Elements of the WIMP Interface- Interactivity - The Context of the Interactions	CO1	K1
II-LINU	Design Process: Design Basics- Introduction - Process- User Focus- Scenarios- Navigation Design- Screen Design and Layout-Interaction and Prototyping. Design RulesIntroduction- Principles to Support Usability- GuidelinesGolden Rules and Heuristics-HCI Patterns	CO2	K1, K2, K3
III-TINU	Implementation Support: Introduction - Elements of Windowing Systems - Programming the Application- Using Toolkits-User Interface Management Systems. Evaluation Techniques: What is an Evaluation- Goal of EvaluationEvaluation Through Expert Analysis-Choosing an Evaluation Method	CO3	K1, K2, K3,K4
AI-TINU	Universal Design: Introduction - Universal Design Principles-Designing for Diversity. User Support: Introduction-Requirements of User Support- Approaches to User Support-Adaptive Help Systems-Designing User Support Systems	CO4	K1, K2, K5
UNIT-V	Models: Cognitive Models: Introduction-Goals and TaskLinguistic Models- Challenge of Display Based SystemPhysical and Device Models - Cognitive Architectu	CO5	K1, K2, K3,K4

1. Alan dix, Janet finlay, Gregory D. Abowd and Russell Beale,(2004),Human Computer Interaction, 3rd edition, Pearson Education

Reference Books

1 John C. Caroll, (2002), Human Computer Interaction in the new millennium, Pearson Education 2. Jenny Preece, Yvonne Rogers, Helen Sharp (2019), Interaction Design: Beyond Human–Computer Interaction, fifth edition, John Wiley & Sons In

Website and e-learning source

1. http://courses.iicm.tugraz.at/hci/

2. http://www.hcibook.com/hcibook/downloads/pdf/exercises.pdf

3. http://www.idemployee.id.tue.nl/g.w.m.rauterberg/lectures.html

4.http://user.medunigraz.at/andreas.holzinger/holzinger/papersen/HCI/Workshop/for ISSEP% 202005.pdf

5. http://universaldesign.ie/What-is-Universal-Design/The7-Principles/ (Unit IV: Universal Design Principles)

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able to

COs	CO Description	Cognitive Level
CO1	Describe typical human-computer interaction (HCI) models, styles, and various historic HCI paradigms	K1
CO2	Identify the usability and the beneficiary factors of User support systems	K1, K2
CO3	Analyze the core theories, models and methodologies in the field of HCI	K1, K2, K3,K4
CO4	Evaluate interactive systems based on the human factor theories	K1, K2, K5
CO5	Elaborate an interactive system based on the design principles, standards and guidelines	K1, K2, K3,K4

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	3	2	2	2	1	-	-	-	2	3	2	2
CO2	2	3	3	2	2	2	-	-	-	1	3	2	2
CO3	3	2	3	2	2	1	2	-	-	3	3	3	2
CO4	2	3	3	2	2	2	-	-	-	2	2	3	3
CO5	3	2	2	3	2	2	1	-	-	2	3	2	3

Title of the Course	Big Data Analytics	Hours/Week	5
Course Code	APEIT15D	Credits	3
Category	ELECTIVE II (EC2)	Year & Semester	I & I
Prerequisites	Basic idea of Data warehousing, basic programming.	Regulation	2024

Objectives of the course:

- > Understand the Big Data Platform and its Use cases, Map Reduce Jobs
- > To identify and understand the basics of cluster and decision tree
- > To study about the Association Rules, Recommendation System
- \succ To learn about the concept of stream
- Understand the concepts of NoSQL Databases

UNITS	Contents	COs	Cognitive Levels
I-TINU	Evolution of Big data - Best Practices for Big data Analytics — Big data characteristics — Validating — The Promotion of the Value of Big Data — Big Data Use Cases- Characteristics of Big Data Applications — Perception and Quantification of Value - Understanding Big Data Storage — A General Overview of High- Performance Architecture — HDFS — Map Reduce and YARN — Map Reduce Programming Model	CO1	K1
II-LINU	Advanced Analytical Theory and Methods: Overview of Clustering — K-means — Use Cases — Overview of the Method — Determining the Number of Clusters — Diagnostics — Reasons to Choose and Cautions Classification: Decision Trees — Overview of a Decision Tree — The General Algorithm — Decision Tree Algorithms — Evaluating a Decision Tree — Decision Trees in R — Naïve Bayes — Bayes Theorem — Naïve Bayes Classifier.	CO2	K1, K2, K3

	Advanced Analytical Theory and Methods: Association Rules —								
III-	Overview — Apriori Algorithm — Evaluation of Candidate Rules —								
	Applications of Association Rules — Finding Association& finding	CO2	K1, K2,						
III-LINU	similarity - Recommendation System: Collaborative	CO3	K3,K4						
D	Recommendation- Content Based Recommendation — Knowledge								
	Based Recommendation- Hybrid Recommendation Approaches.								
	Introduction to Streams Concepts — Stream Data Model and								
	Architecture — Stream Computing,								
	Sampling Data in a Stream — Filtering Streams — Counting Distinct								
VI-TIN U	Elements in a Stream — Estimating moments — Counting oneness in	CO4	W1 W0 W5						
LIN	a Window — Decaying Window — Real time Analytics	04	K1, K2, K5						
D	Platform(RTAP) applications — Case Studies — Real Time								
	Sentiment Analysis, Stock Market Predictions. Using Graph								
	Analytics for Big Data: Graph Analytics								
	NoSQL Databases : Schema-less Models : Increasing Flexibility								
	for Data Manipulation-Key Value Stores- Document Stores - Tabular	CO5							
Γ-V	Stores - Object Data Stores - Graph Databases Hive - Sharding		K1, K2,						
UNIT-V	Hbase — Analyzing big data with twitter — Big data for E-	005	K3,K4						
	Commerce Big data for blogs — Review of Basic Data Analytic								
	Methods using R.								
Recomme	ended Text Books								
А	nandRajaraman and Jeffrey David Ullman, "Mining of Massive Datasets"	", Camł	oridge						
Universit	y Press, 2012.								
Reference	e Books								
	1. David Loshin, "Big Data Analytics: From Strategic Planning to Ent	erprise	Integration						
		-	-						
with Tools, Techniques, NoSQL, and Graph", Morgan Kaufmann/El sevier Publisher									
	2013								

2. EMC Education Services, "Data Science and Big Data Analytics: Discovering,

Analyzing, Visualizing and Presenting Data", Wiley publishers, 2015.

Website and e-learning source

- 1. <u>https://www.simplilearn.com</u>
- 2. https://www.sas.com/en_us/insights/analytics/big-data-analytics.html
- 3. https://archive.nptel.ac.in/courses/106/104/106104189/

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able to

COs	CO Description	Cognitive Level
CO1	Work with big data tools and its analysis techniques.	K1
CO2	Analyze data by utilizing clustering and classification algorithms.	K3, K4
CO3	Learn and apply different mining algorithms and recommendation systems for large volumes of data	K1, K2, K3
CO4	Perform analytics on data streams.	K1, K2, K4
CO5	Learn NoSQL databases and management.	K1, K2, K3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	3	2	2	2	1	-	-	-	2	3	2	2
CO2	2	3	3	2	2	2	-	-	-	1	3	2	2
CO3	3	2	3	2	2	1	2	-	-	3	3	3	2
CO4	2	3	3	2	2	2	-	-	-	2	2	3	3
CO5	3	2	2	3	2	2	1	-	-	2	3	2	3

Title of the Course	Database System	Hours/Week	5
Course Code	APCIT21	Credits	5
Category	Core-4	Year& Semester	I & II
Prerequisites	Fundamental Computer Knowledge that Includes the hardware and memory storage.	Regulation	2024

Objectives of the course:

- > To under stand the basic DBMS models, architecture, query and to normalize the database.
- > To Learn Transaction Processing, Recovery and Distributed Database.

UNITS	Contents	COs	Cognitive
			Levels
ŀ	Introduction: Database System Applications-Purpose of Database Systems- View of Data- Database Users and Administrators. Relational Database:		
I-TINU	Structure of Relational Databases- Databases Schema- Keys-Schema Diagrams-Formal Relational Query Languages :Relational Algebra- Tuple Relational Calculus	CO1	K1,K2
II-TINU	Database Design: Overview of Design Process-The Entity Relationship Model-Constraints- Removing Redundant Attributes in Entity Sets-Entity- Relationship Diagrams-Reduction to Relational Schemas-Extended E-R features -Alternative Notations for Modeling Data. Relational Database Design: Features of Good Relational Design-Functional Dependency- Normalization: 1NF,2NF,3NF,BCNF,4NF,5NF-FunctionalDependency Theory	CO2, CO3	K1,K2
III-TINU	Transaction Management: Transaction Concept Simple Transaction Model- Storage Structure- Transaction Atomicity and Durability-Transaction Isolation- Serializability. Concurrency Control: Lock Based Protocols- Locks- Granting of Locks-Two Phase Locking Protocol-Timestamp Based Protocol- Recovery System: Failure Classification-Recovery and Atomicity: Log Records-Database Modification-Concurrency Control and Recovery- Recovery Algorithm- Database Recovery Management	CO2, CO3	K1,K2
AI-TINU	Distributed Database: Homogeneous and Heterogeneous Databases- Distributed Data storage- Distributed Transactions-Commit Protocols- Concurrency Control in Distributed Databases-Distributed Query Processing. – Equivalence of Transformation of queries – Transforming Global Queries into Fragment Queries- Case study :Mongo DB	CO4	K1, K2,K3,K5

- Abraham Silberchatz, Henry F.Korth,S.Sudarshan, DatabaseSystemsConcepts,7th Edition, Tata Mcgraw Hill.
- 2. IvanBayross,SQL,PL/SQLTheProgrammingLanguageofORACLE,Fourthedition,BPB

Publications UnitIV&V

Reference Books

- 1. AtulKahate, Introduction to Database Management systems, Pearsoneducation.
- 2. CarloZaniolo, Stefano Ceri, Christos Faloustsos, R.T.Snodgrass, V.S.Subrahmanian, (1997), Advanced Database Systems, Morgan Kaufman.
- 3. GeorgeKoch, KelvinLoney, (2002), Oracle9i: TheCompleteReference, OraclePress, Tata McGrawHill Publication.
- 4. RamezElmasri,ShamkantB.Navathe(2014),"DatabaseSystems",Sixthedition,Pearson Education, New Delhi

Website and e-learning source

- 1. <u>http://www.slideshare.net/SalamaAlbusaidi/emergingdatabase-technology-multimedia-database</u>
- 2. <u>http://www.tutorialspoint.com/plsql/index.htm</u>
- 3. <u>http://www.tutorialspoint.com/plsql/index.htm</u>

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able to

COs	CO Description	Cognitive Level
CO1	Explain the relational databases and uses of PL/SQL	K1,K2
CO2	Apply Schema, ER-Model, normalization, transaction, concurrency ,and recovery on tables using SQL and PL/SQL.	K1,K2
CO3	Analyze and manage relational & distributed ,database, transaction, concurrency control and query languages	K1,K2
CO4	Assess databases based on models and Normal Forms.	K1,K2,K3,K5
CO5	Design and construct able and manipulate it effectively using PL/SQL database objects	K1,K2,K3,K6

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	2	1	2	2	2	1	-	-	2	3	1	2
CO2	3	1	1	1	2	1	1	-	-	2	3	2	1
CO3	3	2	1	3	2	2	1	-	-	2	3	1	2
CO4	3	2	1	3	2	2	1	-	-	2	2	2	1
CO5	3	2	3	3	3	2	1	-	-	3	2	3	3

Title of the Course	RDBMS-Practical	Hours/Week	6
Course Code	APCPIT22	Credits	5
Category	Core-5	Year& Semester	I&II
Prerequisites	Basic understanding of SQL queries	Regulation	2024

Objectives of the course:

> TheprimaryCourseObjectiveofthispaperistolearnandimplementSQL&PL/SQL.

S. No	List of Exercises	COs	Cognitive
5.110		0.05	Levels
1	DDL Commands	CO1-CO5	K1-K5
2	DML Commands	CO1-CO5	K1-K5
3	DCL Commands	CO1-CO5	K1-K5
4	Usage of Sub Queries in DML and Create-SQL	CO1-CO5	K1-K5
5	Solving queries using built-in functions	CO1-CO5	K1-K5
6	Simple programs in PL/SQL block	CO1-CO5	K1-K5
7	Exception Handling in PL/SQL	CO1-CO5	K1-K5
8	Programs using Implicit Cursors	CO1-CO5	K1-K5
9	Programs using Explicit Cursors	CO1-CO5	K1-K5
10	Programs using Explicit Cursors	CO1-CO5	K1-K5
11	Procedures &User-defined functions	CO1-CO5	K1-K5
12	Creation of Triggers	CO1-CO5	K1-K5
Recomme	nded Text Books	1	<u> </u>
1			מממ

1.IvanBayross,SQL,PL/SQLTheProgrammingLanguageofORACLE,Fourthedition,BPB Publications

Reference Books

1.RamezElmasri,ShamkantB.Navathe(2014),"DatabaseSystems",Sixthedition,Pearson Education, New Delhi

Website and e-learning source

- 1. http://www.slideshare.net/SalamaAlbusaidi/emergingdatabase-technology-multimedia-
- 2. <u>http://www.tutorialspoint.com/dbms/index.htm</u>
- 3. http://www.tutorialspoint.com/plsql/index.htm

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able to

COs	CO Description										C	ognitiveL	evel	
CO1	Choose appropriate SQL queries and PL/SQL blocks for the database.											K1-K5		
CO2	Imple	Implement SQL and PL/SQL blocks for the given problem effectively.										K1-K5		
CO3	Analy	ze the p	oroblem	and Ex	ceptions	s using o	queries a	and PL/	SQL blo	ocks.		K1-K5		
CO4	Valida	ate the c	latabase	for nor	malizati	ion usin	g SQL a	and Pl/S	QL bloo	cks.		K1-K5		
CO5	Desig Trigge		base tab	les, crea	ate Proc	edures,	user-det	fined fu	nctions	and		K1-K5		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	
CO1	3	2	2	1	1	-	-	-	-	2	3	2	1	
CO2	2 2 2 1 3 1 1 2								3	1	2			
CO3	1 1 3 2 2 1 1 3								3	2	3			
CO4	1 1 2 3 2 1 1 3								3	2	3			
CO5	1	3	2	3	2	2	1	-	-	3	3	2	3	

Title of the Course	Mobile Development-Practical	Hours/Week	6
Course Code	APCPIT23	Credits	4
Category	Core-6	Year& Semester	I & II
Prerequisites	Basic understanding on Java Programming	Regulation	2024

Objectives of the course:

To provide the students with the basics of Android Software Development tools, development of software on mobile platforms and deploying software to mobile devices.

S.N	List of Exercises	COs	Cognitive Levels
0			
	Unit - I		
1	Build a basic calculator with addition functionality using Edit Text, Text View, and Button components.	CO1-CO5	K1- K5
2	Create and navigate between multiple screens in an Android application.	CO1-CO5	K1-K5
	Unit - II		
1	Develop an Android app to demonstrate the usage of Date Picker and Time Picker.	CO1-CO5	K1-K5
2	Create an Android app to display a list of items using List View.	CO1-CO5	K1-K5
	Unit - III		
1	Create an activity and apply styles and themes to enhance its appearance.	CO1-CO5	K1-K5
2	How to create and navigate between activities using explicit and implicit intents.	C01-C05	K1-K5
	Unit - IV		
1	Develop an Android app to demonstrate the use of a context menu for specific UI elements.	CO1-CO5	K1-K5
2	How to play video files using the Video View widget in Android.	CO1-CO5	K1-K5
	Unit - V		
1	Create, insert, and retrieve data from an SQLite database in an Android app.	CO1-CO5	K1-K5
2	Send SMS messages programmatically in an Android application.	CO1-CO5	K1-K5

Recommended Text Books

Wei-MengLee, (2012), BeginningAndroid4ApplicationDevelopment, WileyIndiaEdition

Reference Books

1. OnurCinar, (2012), AndroidAppswithEclipse, Apress, Springer (India) Private Limited.

 $2. \ Reto Meier, (2010), Professional Android 2 Application Development, Wiley India Edition$

Website and e-learning source

- 1. http://devcloper.android.com/training/basics/firstapp/index.html
- 2. www.vogella.com/articles/Android/article.html
- 3. www.coreservlets.com/android-tutorial/
- 4. www.edumobile.org/android/category/android-beginner-tutorial
- 5. http://www.androidhive.info/2011/11/android-sqlitedatabase-
- tutorial/(Unit V: Ex. No.3 (SQ Lite Database)

Course Learning Outcomes(for Mapping with POs and PSOs)

On completion of the course the students should be able to

COs	CO Description	Cognitive Level
CO1	Demonstrate the set up and configuration of Android Development Environment.	K1,K2
CO2	ApplythenecessaryUIcomponentswithdifferentstyles,themes,views,and layouts	K1,K2,K3
CO3	Examine and implement their queried services such as messaging, mailing, Multimedia concepts for the given problem	K1,K2,K3,K4
CO4	Test and debug the Android applications with different inputs.	K1,K2,K3,K5
CO5	Create mobile applications that make use of various and void features, Functions and database tasks	K1,K2,K3,K6

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	3	2	2	2	3	3	-	-	2	3	1	2
CO2	3	3	3	2	2	2	3	-	-	3	3	2	1
CO3	3	3	3	2	2	2	3	-	-	2	3	3	1
CO4	3	2	3	3	3	2	3	-	-	2	3	3	2
CO5	3	2	3	3	3	2	2	-	-	2	3	1	1

Title of the Course	Network sand Security	Hours/Week	4
Course Code	APEIT24A	Credits	3
Category	Elective III	Year& Semester	I & II
Prerequisites	Basic knowledge about computer networks	Regulation	2024

Objectives of the course:

> To become familiar with the various data structures and their applications and to increase the understanding of basic concepts of the design and use of algorithms.

UNITS	Contents	COs	Cognitive Levels
I-LINU	Uses of Computer Networks – Network Hardware – Line Configuration – Topology–Transmission Modes–Reference Models: OSI Reference Model – TCP/IP Reference Model –Physical Layer: Guided Transmission Media – Wireless Transmission–Communication Satellites–Public Switched Telephone Network: Local Loop–Multiplexing–Switching	CO1, CO2	K1,K2
II -TINU	Data Link Layer : Design Issues-Error Detection and Correction-Network Layer: Design Issues–Routing Algorithms :Shortest Path Routing– Distance Vector Routing–Link State Routing–Broad cast Routing– Multicast Routing–Congestion Control	CO2, CO3	K1,K2, K3,K4
III-LINU	Network Layer in the Internet: IP Addresses –Transport Layer: Elements of Transport Protocols: Addressing – Connection Establishment – Connection Release–Application Layer: Domain Name System–Email: Architecture and Services	CO3, CO4	K3,K4
VI-TINU	Network Security: Introduction to Cryptography - Symmetric - Key Cryptography - Asymmetric- key Cryptography – Security Services: Message Confidentiality - Message Integrity - Message Authentication – Digital Signature-Entity Authentication–Security in the Internet: IP Security-SSL/TLS: SSL services-SSL Protocols -Firewalls	CO3, CO4	K3,K4
UNIT-V	Security for Wireless Networks :Introduction–Protecting the wireless networks–Physical Security–Authentication and access control- Smartphone Security: Security Threats-Steps to smart phone security– Websites and Web application Security :Definition– Available Technologies -Threats-Strategies. Case Studies :To study recent Wi-Fi and Smartphone technologies	CO4, CO5	K4,K5

Recommended Text Books

1. AndrewS.Tanenbaum, DavidJ.Wetherall (2022), ComputerNetworks, PrenticeHallofIndia, V

Edition. (Unit I - Unit - III) Unit I - Chapter 1,2 Unit II - Chapter 3,5 Unit III - Chapter 5,6,7

2. BehrouzA.Forouzan,(2017),DataCommunicationsandNetworking,TataMcGraw-Hill

Publishing Company Limited, IVE dition. (Unit IV) Unit IV-Chapter 30, 31, 32

Reference Books

1. Charles P.Pfleeger, Shari Lawrence P fleeger (2002), SecurityinComputing, 3rdEdition, Pearson Education.

- 2. JamesF.Kurose,KeithW.Ross(2005),ComputerNetworking,3rdEdition,Addison Wesley,.
- 3. WilliamStallings(2006), CryptographyandNetworkSecurity:PrinciplesandPractice, 3rdEdition, PHI.

Website and e-learning source

1. 1.http://wndw.net/pdf/wndw3-en/ch09-security-for-wirelessnetworks.pdf(UnitV-WirelessNetworks Security)

2. https://www.fcc.gov/sites/default/files/smartphone_master_document.pdf(UnitV-Stepstosmartphone security)

3. https://www.csoonline.com/article/3241727/mobilesecurity/6-mobile-security-threats-you-should-take

seriously-in-2019.html (Unit V – Smart Phone Security Threats)

4. https://kgk.uni-obuda.hu/sites/default/files/12_Kadena.pdf(UnitV-SmartPhoneSecurityThreats)

5. https://www.goodfirms.co/glossary/web-security/(UnitV-Web Secure

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able to

COs	CO Description	Cognitive Level
CO1	Outline the concepts and fundamentals of data communication and computer	K1
	networks	
CO2	Identify the usage and importance of layered model, network security and web security	K1,K2
CO3	Classify the techniques based on required application	K1,K2,K3,K4
CO4	Analyze the significant applications of protocols and layers used in data Communication and networking	K1,K2,K3,K4
CO5	Explain the functionality of various techniques and algorithms that works at different layers	K1,K2,K3,K4,K5

Department of Computer Science-Syllabus (Effectfrom2024-2025)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	3	1	1	-	2	-	-	-	-	3	2	2
CO2	2	2	1	2	-	2	-	-	-	1	2	2	2
CO3	2	2	2	2	2	3	2	-	-	2	2	2	2
CO4	3	3	1	3	2	3	2	-	-	2	3	3	3
CO5	2	2	2	3	3	3	2	-	-	2	2	2	3

Title of the Course	CLOUDCOMPUTING	Hours/Week	4
Course Code	APEIT24B	Credits	3
Category	Elective III	Year& Semester	I&II
Prerequisites	Basic knowledge on software system Specifically on Operating System	Regulation	2024

Objectives of the course:

> Understand the different concepts of cloud computing and its services

UNITS	Contents	COs	Cognitive
UNID	Contents	003	Levels
I-TINU II -TINU	Introduction: Cloud Computing Basics :Cloud Computing Overview- Applications of cloud computing Intranets and the cloud– First movers in the cloud-Benefits-limitationsofcloudcomputing–SecurityConcerns–Cloud Computing Services–Salesforce.com Cloud Computing Technology: Hardware and Infrastructure–Clients– Security– Network– Services-Cloud Storage– Standards– Cloud Computing at work :Software as a Service–Software Plus Services–Developing Applications	CO1 CO1, CO2	K1,K2 K1,K2
III-TINU	Virtual Machines and Virtualization: Introduction - Understanding Virtualization-History of Virtualization –Leveraging Blade Servers Server Virtualization – Desktop Virtualization – Virtual Networks – Data Storage Virtualization.DataStorageinCloud:EvolutionofNetworkStorage–Cloud based data Storage Advantages and disadvantages of Cloud based data storage-Cloud based Backup systems-File Systems Cloud based Block Storage	CO2	K1,K2
VI-TINU	Migrating into a Cloud: Introduction– Broad approaches of Migrating into cloud –The Seven Step Models of Migrating into a Cloud. Mobile Cloud Computing :Evolution of Mobile Computing–Mobile Cloud Eco System Mobile Players	CO3, CO4	K2,K3,K4
V-TINU	Data security in cloud: Introduction – Current state of data security – Homo sapiens and Digital Information – Cloud Computing and Data security Risk –Cloud Computing and Identity–The Cloud, Digital Identity and Data Security-Content Level Security-Pros and Cons	CO4, CO5	K3,K4,K5

Recommended Text Books

- 1. 1.AnthonyT.Velte,TobyJ.Velte,RobertElsenpeter,"CloudComputing:APractical Approach", McGrawHill(2017)
- 2. Kris Jamsa ,"Cloud Computing" Jones and Barlett Student Edition 2016

Reference Books

1. Rajkumar Byya, James Broberg, Andrzej Goscinski, "Cloud Computing Principles and Paradigms", Wiley &sons

Website and e-learning source

1. https://swayam.gov.in/nd1_noc20_cs55/

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able to

COs					Co	o <mark>gnitive I</mark>	_evel							
CO1	Articulate the main concepts, key technologies of cloud computing in terms Of strengths, limitations and applications.											K1,K2		
CO2	Categorizethearchitectureandinfrastructureofcloudcomputingsuchas IaaS and SaaS											K1,K2		
CO3	Explain the concept of virtual machines and virtualization											K2,K3		
CO4	4 Apply suitable storage algorithms in cloud computing										K3,K4			
CO5		•					into a c concep			e cloud puting		K4,K5		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	
CO1	3	1	-	-	-	2	-	-	-	2	2	2	2	
CO2	3	3	2	2	-	2	-	-	-	2	3	2	1	
CO3	2 2 2 2 1 2 1 2							2	3	2				
CO4	3 2 2 3 - 2 3 2									2	3	2		
CO5	3	3	3	3	-	3	1	-	-	3	3	2	3	

Title of the Course	Biometric Techniques	Hours/Week	4
Course Code	APEIT24C	Credits	3
Category	Elective III	Year& Semester	I & II
Prerequisites	Basic knowledge of computer vision and cyber Security concepts	Regulation	2024

Objectives of the course:

> To acquire the knowledge about the compiler design and to understand the different phases of Compiler.

UNITS	Contents	COs	Cognitive
		005	Levels
	Introduction: Biometric Fundamentals - Biometrics Vs Traditional		
÷.	Techniques - Benefits of Biometrics in Identification Systems - Key		
I-LINU	Biometric Terms and Processes: Verification, Identification and Biometric	001	W1 W0
5	Matching-Accuracy in Biometric Systems :False Match Rate ,False Non-	CO1	K1,K2
	Match Rate ,Failure to Enroll Rate, Derived Metrics		
Η	Physiological Biometrics: Finger Scan: Components-How it works-	CO1,	
	Competing Technologies- Deployments-Strengths and Weaknesses. Facial Scan: Components-How it Works Competing Technologies-Deployments-	CO2	K1,K2
UNIT- II	Strengths and Weaknesses	001	
D			
	Other Physiological Biometrics: Iris Scan: Components- How it Works-		
[-]	Competing Technologies-Deployments Strengths and Weaknesses. Voice		
III-LINO	Scan: How it Works Competing Technologies-Deployments-Strengths and	CO2	K1,K2
Ũ	Weaknesses .Other Physiological Biometrics: Hand Scan and Retina Scan		
	Behavioral Biometrics: Signature Scan and Keystroke Scan: How it Works-		
VI	Competing Technologies Deployments-Strengths and Weaknesses. Esoteric		
VI-TINU	Biometrics: Vein Pattern- Facial Thermograph-DNA- Sweat Pores- Hand	CO3,	K2,K3,K4
N	Grip-Finger Nail Bed –Body Odor-Ear Gait-Skin Luminescence-Brain	CO4	K2,K3,K4
	Wave Pattern-Foot Print and Foot Dynamics		
7	Biometric Applications: Categorizing Biometric Applications - Application		
- -T	Areas: Criminal and Citizen Identification, Surveillance, PC/Network	CO4,	
V-TINU	Access, E-Commerce/Telephony and Retail/ATM-Costs to Deploy-Issues	CO5	K3,K4,K5
C	In Deployment-Biometric Standards- Multi Modal Biometric Concepts		
.G. College o	f Arts and Science (Autonomous),Gudiyattam.		Page4

Recommended Text Books

1. Samir Nanavati, Michael Thieme, Raj Nanavati, (2018), Biometrics – Identity Verification in a Networked

World, Wiley-dream tech India Pvt Ltd, New Delhi

2. JohnD.Woodward,NicholasM.Orlans,PeterT.Higgins,Biometrics:theultimatereference,Dreamtech

Press(2017)

Reference Books

1.AnilKJain,PatrickFlynn,ArunARoss,(2008),Hand book of Biometrics, Springer

Website and e-learning source

1. http://www.sans.org/readingroom/whitepapers/authentication/biometric-scanning/

2. http://www.biometrics.gov/documents/biointro.pdf

3. http://www.cse.unr.edu/~bebis/CS790Q/Lect/IntroBiometrics.pdf

4. http://www.planetbiometrics.com/creo_files/upload/articlefiles/btamvol1update.pdf

5. http://www.biometrics.gov/documents/biointro.pdf(UnitV:BiometricApplications)

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able to

COs	CO Description	Cognitive Level
CO1	Outline the existing theories ,methods and interpretations in the field of biometrics	K1,K2
CO2	Identify the deployment areas, competing technologies, strength and Weakens of various Physiological and Behavioral Biometrics	K1,K2
CO3	Analyze various Application areas, Biometric security issues and Biometric standards	K2,K3
CO4	Assess the methods relevant for design, development and operation of biometric access control systems	K3,K4
CO5	Determineidentification/verificationsystemstovalidatetheuseridentity andtechnologicalupliftsinbiometricscomparedtotraditionalsecuring mechanisms	K4,K5

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	1	-	-	1	2	1	-	-	2	3	2	1
CO2	3	2	2	2	2	2	1	-	-	2	3	2	2
CO3	3	2	3	2	2	3	2	-	-	2	2	2	2
CO4	3	2	3	2	3	2	2	-	-	1	2	3	2
CO5	3	3	2	-	3	2	1	-	-	2	3	3	3

Title of the Course	Information Security	Hours/Week	4
Course Code	APEIT24D	Credits	3
Category	Elective III	Year& Semester	I & II
Prerequisites	Understand network security threats, security services, and countermeasures	Regulation	2024

Objectives of the course:

This course has been designed for students to learn and understand

- The fundamental concepts of Security.
- The various methods and learning algorithms in Security.
- The underlying mathematical relationships within and across Cryptographic algorithms.

UNITS	Contents	COs	Cognitive
			Levels
I-LINU	Introduction to Information Security : Attacks, Vulnerability, Security Goals, Security Services and mechanisms- Number Theory-Euclidean algorithm- Modular Arithmetic-Fermat and Euler Algorithm- The Chinese reminder Algorithm- Classical Encryption Techniques –Symmetric Cipher model- Substitution Techniques-Transposition Techniques	CO1	
II-LINU	Block Cipher and Data Encryption Standard-strength of DES-Strength Of DES-Advanced Encryption Standard-AES structure- AES Transformation Function-AES Key Expansion. –Public key Cryptography- RSA Algorithm- Differ Hellman Key Exchange-Elgamal Cryptographic System-Elliptic curve Arithmetic-Elliptic Curve Cryptography-Pseudo Random Generation	CO2	
III-LIN U	CryptographicHashFunctions-SecureHashFunctions-MessageAuthenticationCode-HMAC-DAA-CMAC-DigitalSignatures-ElgamalDigital SignatureScheme-Scheme-Scheme-SignatureScheme-Scheme-IsignatureSignatureScheme-KeyManagement and Distribution-Encryption-UsingAsymmetricEncryption-X.509	CO3	
AI-LINN	Network Access Control –Extensible Authentication Protocol- Cloud Computing- Cloud Security Risk and Counter measures- Data protection in Cloud- Cloud Saas- Transport layer Security-Web Security Considerations- Https-SSH- wireless Network Security-IP Security-IDS-Firewalls	CO4	
A-LINN	Non-Cryptographic Protocol Vulnerabilities : DoS and D DoS, Session Hijacking and Spoofing, Pharming attacks. Software Vulnerabilities - Phishing, Buffer Overflow, Format String attacks, SQL Injection.	CO5	

Recommended Text Books

- 1. Cryptography And Network Security Principles And Practice, 7th Edition, William Stallings
- 2. Security in Computing, Fourth Edition, by Charles P. P fleeger, Pearson Education.

Reference Books

- 1. Modern Cryptography: Theory and Practice, by Wenbo Mao, Prentice Hall.
- 2. Network Security Essentials: Applications and Standards, by William Stallings. Prentice Hall.

Website and e-learning source

1. https://www.barcodesinc.com/articles/cryptographylinks.htm?srsltid=AfmBOoq4TLu0yniWCOhbXbvogG86LWf-1FCE0gA67oX1xmZLlfgv8l0v

Course Learning Outcomes (for Mapping with Pos and PSOs)

Students will be able to

Cos	CO Description	Cognitive Level
CO1	Acquire knowledge on standard algorithms used to provide confidentiality, integrity and authenticity and encryption technique	K1,K2,K3
CO2	Understand the various encryption standards and public key cryptography	К3
CO3	Make use of application protocols to design and manage a secure system.	K4
CO4	Learn the configuration and manage Web and Transport layer Security	K4,K5
CO5	Learn about the Non Cryptographic protocol vulnerabilities	K2

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	3	1	1	1	1	-	-	-	-	3	2	2
CO2	2	2	1	2	1	1	-	-	-	1	2	2	2
CO3	2	2	2	3	2	3	2	-	-	2	2	2	2
CO4	3	2	1	3	2	3	2	-	-	2	3	2	3
CO5	2	2	1	3	3	2	2	-	-	2	2	2	3

Title of the Course	Software Engineering	Hours/Week	4
Course Code	APEIT25A	Credits	3
Category	Elective IV	Year& Semester	I & II
Prerequisites	Basic knowledge of software programs	Regulation	2024

Objectives of the course:

This paper familiarizes the students with the knowledge of basic Software engineering methods and practices and gives hands on experience in developing a software project by using various software engineering principles and methods in each of the phases of software development.

UNITS	Contents	COs	Cognitive
UNIIS	Contents	COS	Levels
I-TINU	Introduction: A Generic View of Process - Process Models: The Waterfall Model-Incremental Model-Evolutionary Model-Specialized Model-The Unified Process-Agile Process- Agile process Models Exercise: Choose any one project and do the following exercises for the chosen project a. Student Result Management System b. Library management system c. Online course reservation system d. Railway reservation system e. Recruitment system f. Stock Maintenance System	CO1, CO5	K1,K2, K4,K5
II-LINN	Write the Problem Statement for a suggested system of relevance System Engineering: System Engineering Hierarchy - System Modeling - Requirements Engineering: Tasks- Initiating The Process-Eliciting Requirements-DevelopingUseCases-NegotiatingRequirements-Validating Requirements - Building the Analysis Models: Data modeling concepts - Scenariobased-Floworiented-ClassbasedModelingExercise:Preparation Of Software Requirement Specification Document	CO3, CO4	K1,K2, K3,K4
III-TINU	Design Engineering: Design Concepts - Design Models - Pattern Based Design - Architectural Design - Component Level Design: Component – Class Based and Conventional Components Design –User Interface Design: Analysis and Design Exercise: Draw DFD and Use Case diagram for the Chosen project using any CASE tools	CO5	K1,K2,K4, K5

Department of Computer Science-Syllabus (Effectfrom2024-2025)

	Testing Strategies: Software Testing- Strategies: Conventional-Object				
	Oriented-Validation Testing-System Testing: Recovery -Security-Stress				
VI-TINU	- Performance - Testing Tactics: Testing Fundamentals- Black Box - White		K1,K2,K4,		
	Box-BasisPath-ControlStructureExercise:Developtestcasesandperform	CO5	K5		
-	Various testing using any one of the testing tools				
	Estimation : Software project Estimation - Empirical Estimation models -				
	Risk management : Software Risks - Risk Identification - Risk Projection -				
Þ.	Risk Mitigation, Monitoring and Management - Quality Management:				
A-TINU	Quality Concepts - Quality Assurance -Software Reliability- Quality				
N N	Standards Case Studies: Develops Tools Exercise: Perform Estimation of	CO2	K1,K2,K3		
	effort using FP Estimation for chosen system and prepare Gantt Chart/PERT	002	,		
	Chart for the same.				
Recommended Text Books					
1. RogerPressman.S., "SoftwareEngineering:APractitioner'sApproach", 9th Edition, McgrawHill, 2023					
Reference Books					
	RichardFailey, "SoftwareEngineeringConcepts", TataMcGraw-Hill, 2019. P.Fleeger, "SoftwareEngineering", PrenticeHall, 2016				

- 2. P.Fleeger, "SoftwareEngineering", PrenticeHall, 2016
- 3. CarloGhezzi, MehdiJazayari, DinoMandrioli, "FundamentalsofSoftwareEngineering", Prentice Hall Of India 1991.
- $4. Sommerville, "SoftwareEngineering" 7^{th} Edition: AddisonWesley, 2020$

Website and e-learning source

- 1. http://productdevelop.blogspot.in/2011/03/what-areformal-technical-reviews-ftr.html
- 2. http://basicqafundamentals.blogspot.in/2011/03/difference-between-alpha-testing-beta.html
- 3. https://www.wiziq.com/tutorials/software-engineering
- 4. http://www.jkinfoline.com/software-engineering.html
- 5. http://www.freetutes.com/systemanalysis/
- 6. http://www.softwaretestingstuff.com/2007/09/whitebox-testing.html(UnitIV:WhiteBoxTesting)

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able to

COs	CO Description	Cognitive Level
CO1	Recognize the software process models including the specification, design, implementation, and testing for a software project	K1,K2
CO2	Utilize recent and advanced tools necessary for software project development, testing, management and reuse	K1, K2,K3
CO3	Compare and contrast various design, testing and quality issues	K1,K2,K3
CO4	Prioritize the requirements and risk accordingly that meet user expected performance, maintenance and quality	K1,K2,K4
CO5	Design software projects with well-defined architecture, modules, Components and interfaces	K1,K2,K4,K5

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	2	1	-	-	2	1	-	-	2	2	2	3
CO2	3	2	2	2	3	2	2	-	-	3	3	3	3
CO3	2	3	2	3	-	2	2	-	-	3	3	3	2
CO4	2	2	3	3	-	3	3	-	-	3	2	2	2
CO5	3	3	3	2	2	3	3	-	-	3	2	3	3

Title of the Course	Object Oriented Analysis and Design	Hours/Week	4
Course Code	APEIT25B	Credits	3
Category	Elective IV	Year& Semester	I & II
Prerequisites	Basic understanding of at least one of the object-oriented programs	Regulation	2024

The primary objective is to understand the principles & requirements and apply the UML(Unified Modeling Language) and tools for OOA and Design..

LINITS	Contonto	COs	Cognitive
UNITS	Contents	COS	Levels
I-LINN	Object Basics: Object-oriented Philosophy–Object–Object State, Behaviors and Methods. Encapsulation and Information Hiding–Class Hierarchy–Polymorphism, Aggregation, Object Containment, Meta Classes.	CO1	K1,K4
UNIT- II	Object Oriented Methodologies: Rumbaugh Object Model, Booch Methodology- Jacobson Methodology, Patterns, Frameworks and Unified Approach.	CO2, CO3, CO4	K1,K2,K3, K4
UNIT- III	Object Oriented Analysis: Business Object Analysis–Use Case Driven Approach–Use Case Model. Object Analysis–Noun Phrase Approach– CRC–Identifying Object Relationships and Methods.	CO4	K1,K2,K3, K4
UNIT-IV	Object Oriented Design: The Design Process–Design Axioms–Corollaries – Design Patterns – Designing Classes. Software Quality: Tests- Testing Strategies–Test Cases–Test Plan–Continuous Testing–Miers Debugging Principles.	CO4, CO5	K1,K2,K3, K4
UNIT- V	UML and Programming: Introduction – State and Dynamic Models – UML Diagrams–Class Diagrams–Use Case Diagrams-UML Dynamic Modeling. Case Studies: Rational Rose – Real Time Applications: Student Result Management System –Library management system – Online course reservation system	CO5	K1,K2,K3, K4

Recommended Text Books

1. AliBrahami, ObjectOrientedSystemsDevelopment, Tata-McGrawHill, NewDelhi. (2017)

Reference Books

1. Martin Fowler, Kendall Scott, UML Distilled-Applying the Standard Object Modeling Language, Addition Wesley.

2. GradyBooch,(1994),Object-orientedAnalysisandDesignwithapplications,2ndEdition,Addition

Wesley.

Website and e-learning source

1. http://www.slideshare.net/helghareeb/object-orientedanalysis-and-design-12164752

2. http://www.uml-diagrams.org/uml-object-orientedconcepts.html

3. http://www.tutorialspoint.com/object_oriented_analysis_design/index.htm

4. <u>https://www.mppmu.mpg.de/english/kluth_oo_intro.pdf</u>

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able to

Cos	CO Description	Cognitive Level
CO1	Recognize the concepts and principles of object-oriented analysis, design and	K1,K4
	Testing	
	Demonstrate the importance of system development process using various	
CO2	Approaches and choose there levant technique for a system in each phases	K1,K2
	of SDLC	
	Differentiate various object-oriented analysis, design and testing methods	
CO3	and models.	K1,K2,K3
	Assess various analysis, design and testing strategies appropriate to build	
CO4	high- performance object-oriented system.	K1,K2,K3,K4
	Design Object oriented systems using object modeling techniques and	
CO5	analyze them for correctness and quality.	K1,K2,K3,K4

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	1	3	2	2	2	2	-	-	3	2	2	1
CO2	2	2	2	2	2	2	1	-	-	2	2	2	3
CO3	2	1	2	2	2	2	1	-	-	2	3	2	2
CO4	2	2	2	3	1	2	2	-	-	3	2	3	2
CO5	2	3	2	3	2	1	1	-	-	2	2	2	2

COURSEDESCRIPTO	RS
------------------------	----

Title of the Course	Software Project Management	Hours/Week	4
Course Code	APEIT25C	Credits	3
Category	Elective IV	Year& Semester	I & II
Prerequisites	Basic knowledge about the fundamentals of Software project development	Regulation	2024

Objectives of the course:

The primary objective is to define and highlight importance of software project management and to become familiarize in formulating software management metrics & strategy in managing projects.

UNITS	Contents	COs	Cognitive Levels
I-LIND	Introduction to Competencies - Product Development Techniques - Management Skills - Product Development Life Cycle - Software Development Process and models-The SEICMM-International Organization for Standardization.	CO1	K1
II-LINU	Managing Domain Processes - Project Selection Models - Project Portfolio Management - Financial Processes - Selecting a Project Team - Goal and Scope of the Software Project -Project Planning - Creating the Work Breakdown Structure-Approaches to Building a WBS-Project Milestones -Work Packages- Building a WBS for Software.	CO2	K1,K2,K3
III-JINU	Tasks and Activities- Software Size and Reuse Estimating-The SEICMM - Problems and Risks - Cost Estimation - Effort Measures - COCOMO: A Regression Model - COCOMO II - SLIM: A Mathematical Model - Organizational Planning - Project Roles and Skills Needed.	CO3	K1,K2, K3,K4
VI-TINU	Project Management Resource Activities - Organizational Form and Structure - Software Development Dependencies - Brainstorming - Scheduling Fundamentals - PERT and CPM - Leveling Resource Assignments-Map the Schedule to a Real Calendar -Critical Chain Scheduling	CO4	K1,K2,K5
A-TINU	Quality: Requirements – The SEICMM -Guidelines - Challenges -Quality Function Deployment - Building the Software Quality Assurance - Plan – Software Configuration Management: Principles-Requirements-Planning And Organizing-Tools-Benefits-Legal Issues in Software- Case Studies: Railway reservation system – Recruitment system – Stock Maintenance System	CO5	K1,K2, K3,K4

Recommended Text Books

1. RobertT.Futrell,DonaldF.Shafer,LindaI.Safer,"QualitySoftwareProjectManagement",

Pearson Education Asia 2020

Reference Books

- 1. PankajJalote, "SoftwareProjectManagementinPractice", AddisonWesley2017
- 2. Hughes, "SoftwareProjectManagement", TataMcGrawHill2004, 5th Edition. 2015

Website and e-learning source

- 1. https://highered.mheducation.com/sites/0077109899/information-center-view/
- 2. https://www.tutorialspoint.com/software_engineering/software_project_management.htm
- 3. https://www.smartsheet.com/content/software-projectmanagement
- 4. https://www.philadelphia.edu.jo/academics/lalqoran/uploads/SPM_Chapter_1-%202016%204.ppt
- 5. https://cs.gmu.edu/~kdobolyi/cs421/projectmanagement.ppt

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able to

COs	CODescription	CognitiveLevel
CO1	Understanding of project management fundamentals such as project planning, risk management and quality assurance	K1
CO2	Choose the appropriate scheduling and testing techniques to build a quality product	K1,K2
CO3	Apply different cost estimation techniques and quality measures for software development	K1,K2, K3,K4
CO4	Differentiate various software development models and methodologies, planning activities and scheduling methods	K1,K2,K5
CO5	Asses the importance of software project documentation and identify the Methods to create project documentation, including requirements documents, design documents, and project plans	K1,K2, K3,K4

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	2	3	2	2	3	3	2	-	-	2	3	2	2
CO2	2	3	2	2	3	3	2	-	-	2	3	2	3
CO3	2	3	3	2	2	3	3	-	-	3	2	2	2
CO4	2	2	3	3	2	2	2	-	-	2	2	3	3
CO5	2	2	3	3	2	2	3	-	-	3	3	3	3

Title of the Course	Cyber Security	Hours/Week	4
Course Code	APEIT25D	Credits	3
Category	Elective IV	Year& Semester	I & II
Prerequisites	Fundamentals of Security Concepts, Ethical Hacking, Digital Forensics	Regulation	2024

Objectives of the course:

This course has been designed for students to learn and understand

- The need for cyber security and its related threats and attacks.
- The methods for secure communication in the cyber world.
- The best practices and regulations related to cyber security.

UNITS	Contents	COs	Cognitive Levels
I-LINU	Basics of Cyber crime Introduction - Cyber Threat – Definition of Cyber Crime – Classification – Current Threats and Trends – Diversity of Cyber Crime–Cyber Hate Crimes–Cyber Terrorism-Need For cyber security.	CO1	K1
II-LINU	Responding to Cyber crime Cyber Strategy – National Security Strategy – Cyber Security Strategy–Organized Crime Strategy–Cyber Crime Strategy- Policy Cyber Crime – International Response – National Cyber Security Structure–Strategic Policy Requirements–Police And Crime Commissioners.	CO2	K1,K2,K3
III-LINN	Investigating Cyber Crime Preventing Cyber Crime –Password Protection–Get Safe Online– Cyber Security Guidance for Business-Cyber Crime Investigation Skills–Criminal Investigation–Code of Ethics –Evidence–Hi-Tech Investigations–Capturing and Analyzing Digital Evidence.	CO3	K1,K2, K3,K4

		1	1					
VI-TINU	Foundations of Digital Forensics Introduction to Digital Forensics - Forensic Software and Hardware - Analysis and Advanced Tools - Forensic Technology and Practices - Forensic Ballistics and Photography - Face-Iris and Fingerprint Recognition-Audio Video Analysis-Windows System Forensics- Linux System Forensics-Network Forensics	CO4	K1,K2,K5					
A-TINU	Case Studies Latest Study Topics on Cyber Crime and Investigations-Recent Cyber Crime Cases –Recent Digital Forensics Cases–Bridging the Gaps in Cyber Crime Investigations between the Cyber securities take holders.	CO5	K1,K2, K3,K4					
Recommended Text Books 1.ThomasHalt,AdamM.BosslerandKathrynC.SeigfriedSpellar,(2017), "CybercrimeandDigitalForensics:AnIntroduction",RoutledgeTaylorandFrancisGroup Reference Books 1. Bernadette H Schell, Clemens Martin,(2004), "Cybercrime", ABC–ClioInc, California.								
Website and e-learning source 1.CyberSecurityandPrivacy-Course(nptel.ac.in)								

Course Learning Outcomes(for Mapping with POs and PSOs)

Students will be able to

COs	CO Description	Cognitive Level
CO1	Understand the concepts of cybercrime	K1
CO2	Describe the Cyber Crime Strategy.	K2
CO3	Identify the Cyber Crime Investigation Methodology.	K3
CO4	Generalize the knowledge on Digital Forensics.	K3
CO5	Apply the Cyber Crime and Digital Forensics concepts in real-time scenarios	K3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	-	1	1	-	1	1	-	-	2	2	-	-
CO2	3	1	1	2	2	1	1	-	-	2	2	3	3
CO3	3	2	3	3	2	2	1	-	-	3	2	3	3
CO4	3	2	1	3	2	1	1	-	-	2	2	2	3
CO5	3	3	3	3	3	2	2	-	-	1	2	3	2

Title of the Course	Skill Enhancement Course-SEC- Mobile Development	Hours/Week	2
Course Code	APSIT26	Credits	3
Category	Skill Enhancement Course	Year& Semester	I&II
Prerequisites	Basic understanding on Java Programming	Regulation	2024

Objectives of the course:

Toprovideacomprehensiveintroductionofthebasicdesignofacomputerandtheinterdependenceand interoperation between the various components inside a computer.

UNITS	Contents	COs	Cognitive Levels
I-TINU II UNIT-I	Getting Started with Android Programming–Using Eclipse for Android Development – Using Android Emulator -Getting to know the Android User Interface: Understanding the Components of a Screen Designing your User Interface with views :Basic Views–Picker Views–List Views - Displaying Pictures	CO1	K1
III III	Activities, Fragments and Intents :Understanding Activities–Applying Styles and Themes to an Activity–Displaying a Dialog Window– DisplayingaProgressDialog–LinkingActivitiesUsingIntents–Fragments.	CO2 CO3	K1,K2,K3 K1,K2, K3,K4
UNIT- IV	Menus with Views : Option Menu–Context Menu. Utilizing the Action Bar: Adding Action Items to the Action Bar–Customizing the Action Items and Application Icon-Working with Audio and Video.	CO4	K1,K2,K5
UNIT- V	Messaging: SMS Messaging – Sending E- Mail- Data Persistence: Creating and Using Databases–Developing Android Services–Publishing Android Applications	CO5	K1,K2, K3,K4

Recommended Text Books

1. Wei-MengLee, (2012), BeginningAndroid4ApplicationDevelopment, WileyIndiaEdition

Reference Books

 $1.\ Onur Cinar, (2012), Android Apps with Eclipse, Apress, Springer (India) Private Limited.$

2. Reto Meier, (2010), Professional Android 2 Application Development, Wiley India Edition

Website and e-learning source

1. http://devcloper.android.com/training/basics/firstapp/index.html

- 2. www.vogella.com/articles/Android/article.html
- 3. www.coreservlets.com/android-tutorial/
- 4. www.edumobile.org/android/category/android-beginner-tutorial
- 5. http://www.androidhive.info/2011/11/android-sqlitedatabase-tutorial/(UnitV:Ex.No.3(SQLite

Database)

Course Learning Outcomes(for Mapping with POs and PSOs)

Students will be able to

Cos	CO Description	Cognitive Level
CO1	Demonstrate the setup and configuration of Android Development Environment.	K1
CO2	Apply the necessary UI components with different styles, themes, views, and layouts	K1,K2
CO3	Examine and implement the required services such as messaging, mailing, multimedia concepts for the given problem	K1,K2, K3,K4
CO4	Test and debug the Android applications with different inputs.	K1,K2,K5
CO5	Create mobile applications that make use of various and roid features, functions and database tasks	K1,K2, K3,K4

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	3	2	2	2	3	3	-	-	2	3	1	2
CO2	3	3	3	2	2	2	3	-	-	3	3	2	1
CO3	3	3	3	2	2	2	3	-	-	2	3	3	1
CO4	3	2	3	3	3	2	3	-	-	2	3	3	2
CO5	3	2	3	3	3	2	2	-	-	2	3	1	1